1ST GREEN ANALYTICAL CHEMISTRY WORKSHOP 5/6 FEBRUARY, 2024 - NOVOTEL PARIS CHARENTON www.tgacworkshop-paris.com

Green Sample Preparation Solutions based on Miniaturization and Automation.

Frank DAVID

RIC technologies

Paris, 05-FEB-2024

technologies

- Keywords:
 - Automation
 - Miniaturization
 - Solventless ("green")
 - High productivity
- Instrumentation: orders of magnitude increase in sensitivity using state-of-the-art MS (MS/MS, TOF...)

Sample preparation ... automation

 Lecture: Two decades of Stir Bar Sorptive Extraction: a retrospective and future outlook.

SBS

Technical Meeting

1999: SBSE (Twister[™], RIC – Gerstel)

More recently:

- SPME Arrow (CTC, Restek)
- HiSorb (Markes/SepSolve)

1990: SPME (Pawliszyn)

technologies

6 pg/60 mL = 100 ppq

technologies

Aroma extraction: SAFE \rightarrow DHS?

- SAFE: solvent assisted flavor extraction
 - Sample or solvent extract dropped in flask under vacuum
 - Vacuum destillation
 - Cold trapping
- No discrimination
 - Very volatile versus less volatile
 - Polar versus apolar
- Compared with steam destillation, SHS, SPME...DHS → FEDHS

Picture: https://research.reading.ac.uk/flavourcentre/flavour-analysis/flavour-extraction-techniques/

Engel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 209, 237–241.

The 1999 Dioxin (PCB) crisis in Belgium

To 5 mL extract 1 g SiO₂ containing 44% H_2SO_4 is added to remove the lipidic fraction

Method was developed ... and published (in a book 🐵)

- ➢ 50 samples per day/instrument
 - Validation & accreditation
- > 5,000 samples analyzed at RIC

QuEChERS avant la lettre

10

. 11 min

- Very slow adaptation in industry and routine labs due to...
 - Complexity
 - Conservatism
 - Costs
 - Compromised results
- How to tackle?
 - 5 recommendations

Importance of correct sampling and sub-sampling

POPs in surface water using automated µLLE - followed by LVI-PTV - GC-MS/MS

Reference method (ISO 28540)	Automated
1 L water + IS	15 mL + IS
Target LOD: 1 ng/L	Target LOD: 1 ng/L = 15 pg/15 mL
LLE with 25 mL hexane	μLLE with 3 mL hexane
100% recovery: 1 ng/25 mL	100% recovery: 15 pg/3 mL
Recover organic phase	Centrifuge (?)
Drying on Na ₂ SO ₄	Transfer 1 mL to 2 mL vial with Na ₂ SO ₄ 100% recovery: 5 pg/1 mL
Concentration to 1 mL	Vortex & centrifuge (?)
Final concentration: 1 ng/mL = pg/µL	Final concentration: 5 pg/mL = fg/µL
GC-MS analysis	GC-MS/MS analysis
1 μL injection	40 μL injection (LVI-PTV)
Amount on-column: 1 pg	Amount on-column: 0.2 pg

 $MS \rightarrow MS/MS$

POPs in surface water using automated μLLE - followed by LVI-PTV - GC-MS/MS

Sampled in 1 L flask \rightarrow aliquot to 20 mL vial \rightarrow autosampler

D. Benanou, presented at 27th ISCC, Riva del Garda, Italy, May 2004

technologies

RIC

On-site SBSE TD-GC-MS: Veolia ARISTOT

Method Translation

Automated determination of Hydrocarbon Oil Index (HOI) in water according to ISO 9377-2

Reference method (ISO 9377-2)	Automated
900 mL water + IS	17 mL + IS
LLE with 50 mL pentane	µLLE with 1 mL hexane
Shake	QuickMix (15 min)
Drying/Clean-up on Na ₂ SO ₄ /Florisil	Decap Transfer 600 μL to 2 mL vial with Na ₂ SO ₄ /Florisil Vortex
Concentration to 1 mL	-
GC-FID analysis 1 μL injection	GC-FID analysis 100 μL injection (COC with EVE)

Automated determination of Hydrocarbon Oil Index (HOI) in water according to ISO 9377-2

technologies

Not only for complex sample preparation methods

Fully Automated Dilutions

Correlation coefficient: 0.99983

NO internal standard !!

Multiple systems installed in Routine water/environmental labs

For example: 10 ng/L (ppt) with 10 mL sample = 100 pg / 10 mL HS = 10 pg onto the column with 1 mL HS injection (splitless): OK with HES-MSD in SIM

Multiple systems installed in Routine water/environmental labs

For example: 10 ng/L (ppt) with 10 mL sample = 100 pg / 10 mL HS = 10 pg onto the column with 1 mL HS injection (splitless): OK with HES-MSD in SIM

- Important remark: On-line is not always best choice
- Productivity (Sample throughput) can be higher with off-line approach (batch processing)

Compromised data?

- CEN/TC 230 meeting Paris, March 14-15, 2019 Evaluation of analytical methodology for whole water measurements in the framework of the EU Water Framework Directive.
- SBSE based methods
 - Well documented in literature
 - Extremely sensitive (pg/L)
 - Low external contamination (phthalates)
 - Concern: Suspended Particulate Matter (SPM)
- Recent research (Gerstel)
 - Dual SBSE extraction single shot GC-MS/MS method
 - Validated for 100 priority pollutants according to WFD
 - Matrices spiked with 50-100-150 mg/L WEPAL SETOC 745 to simulate SPM

Should we stick to "conservative" methods?

- "Official" LLE based methods are also only validated for low (< 150 mg/L) levels of SPM.
- What about (SPE)-LC-MS/MS methods?
 - Direct aqueous injection of water samples (after filtration):
 - no SPM included!
 - Ion suppression?
 - On-line SPE-LC-MS:
 - Automated
 - Highest sensitivity
 - Filter or risk of blockage?
 - Are POPs extracted on (ad)sorbent?
 - Off-line SPE:
 - Automated
 - Less sensitive: only fraction of sample injected
 - More flexible: add Vortex, filtration, concentration... SPM extraction?

Sample Preparation

technologies

GC/MS/MS

Thermal Desorption Unit with cryofocussing in **Cooled Injection System**

Thermal Desorption

7890/7010 HP-5ms UI 30m, 0.25 mm, 0.25 μm 60 °C, 1 min, 40 °C/min, 120 °C, 5 °C/min, 310 °C, 10 min MRM

Data: O. Lerch, Gerstel GmbH

RIC

technologies

- This system will allow you to perform the following types of analysis :
 - Sample preparation: just in time oximation & silylation
 - Liquid injection
- System is upgradable to TD, DHS and other sample preparation modules

• The unique **PrepAhead** function of the MAESTRO software enables thermostating the samples during the GC-MS run of the previous sample, this way ensuring optimal productivity and utilization of the GC-MS system

"Just in time" injection

Flexibility - Multi-methods – Safety & Health

- Biological samples:
 - Small volumes all in 2 mL vials → Agilent 7693 ALS (dual)
- Fats, oils, fatty foods (nuts)
 - Extraction
 - Saponification
 - Derivatization
 - LLE + centrifugation
 - concentration

"Fame-analyzer" ???? FAILED

Flexible sample prep robot

- ISO 12966-2: animal & vegetable fats & oils, no milk
 → KOH/MeOH transesterification
- ISO 12966-4: crude & refined hydrogenated animal & vegetal fats & oils no milk/diary (or conjugated linoleic acid)
 → BF₃/MeOH
- 3. ISO 16958: milk, infant food (long chain PUFA)
 → Sodium Methoxide (NaOCH₃)
 (no fat extraction, direct transesterification in food)

% FAME	Certificate	BF ₃	КОН	NaOCH ₃
C16:0	10.74	10.8	10.93	11.01
C18:0	2.82	2.78	2.78	2.81
C18:1c	25.4	24.91	25.08	24.97
C18:2c	54.13	54.73	54.45	54.48
C18:3 n3	3.35	3.21	3.20	3.18

Installation in Lab

- Take advantage of state-of-the-art GC and MS
- Miniaturized automated reduced solvent consumption increased productivity – safer
- But...
 - Sampling must be reconsidered in function of (automated) sample prep
 - New methods should be compared to existing ones and properly validated (certified materials, proficiency tests, demonstrate equivalence)
 - Take into consideration:
 - Do a method translation exercise before you start
 - On-line or off-line
 - Multiple methods on same system

- Our colleagues at RIC Technologies & RIC Resolve
- Agilent Technologies, Gerstel GmbH & Co. KG & Leco
- Our customers

1ST GREEN ANALYTICAL CHEMISTRY WORKSHOP 5/6 FEBRUARY, 2024 - NOVOTEL PARIS CHARENTON www.tgacworkshop-paris.com

www.RIC-technologies.com